Unbounded negativity on rational surfaces in positive characteristic
نویسندگان
چکیده
Abstract We give explicit blowups of the projective plane in positive characteristic that contain smooth rational curves arbitrarily negative self-intersection, showing Bounded Negativity Conjecture fails even for surfaces characteristic. As a consequence, we show any surface admits birational model failing Conjecture.
منابع مشابه
Kawamata-Viehweg Vanishing on Rational Surfaces in Positive Characteristic
We prove that the Kawamata-Viehweg vanishing theorem holds on rational surfaces in positive characteristic by means of the lifting property to W2(k) of certain log pairs on smooth rational surfaces. As a corollary, the Kawamata-Viehweg vanishing theorem holds on log del Pezzo surfaces in positive characteristic.
متن کاملStructure of Rational Open Surfaces with Non{positive Euler Characteristic
We study mainly connected conngurations of irreducible curves r i=1 C i on a nonsingular rational projective complex surface X such that the Euler characteristic (X n r i=1 C i) 0, hereby continuing a former conjecture of the author and work of Gurjar and Parameswaran. Roughly we show that any such connguration can be extended to another connguration s i=1 C i (r s) with still (X n s i=1 C i) 0...
متن کاملAlgebraic Surfaces in Positive Characteristic
These notes are an introduction to and an overview of the theory of algebraic surfaces over algebraically closed fields of positive characteristic. After some background in characteristic-p-geometry, we sketch the Kodaira– Enriques classification. Next, we turn to more special characteristic-p topics, and end by lifting results and applications to characteristic zero. We assume that the reader ...
متن کاملFoliations and Rational Connectedness in Positive Characteristic
In this paper, the technique of foliations in characteristic p is used to investigate the difference between rational connectedness and separable rational connectedness in positive characteristic. The notion of being freely rationally connected is defined; a variety is freely rationally connected if a general pair of points can be connected by a free rational curve. It is proved that a freely r...
متن کاملSeparable Endomorphisms of Surfaces in Positive Characteristic
The structure of non-singular projective surfaces admitting non-isomorphic surjective separable endomorphisms is studied in the positive characteristic case. The case of characteristic zero is treated in [2], [16] (cf. [3]). Many similar classification results are obtained also in this case; on the other hand, some examples peculiar to the positive characteristic are given explicitly.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Crelle's Journal
سال: 2021
ISSN: ['1435-5345', '0075-4102']
DOI: https://doi.org/10.1515/crelle-2021-0078